
Lecture #9
Hardware Software Codesign

Instructor:
Dr. Ahmad El-Banna

S
P
R

I
N

G
 2

0
1
5

E-626-A
Real-Time Embedded Systems (RTES)

Integrated Technical Education Cluster
At AlAmeeria

©
 A

hm
ad

 E
l-B

an
na

Agenda

Introduction to HS-CODES

Codesign Motivation

Some Issues on Codesign of Embedded
System

2

RT
ES

, L
ec

#9
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

3

Introduction

 Digital systems designs consists of hardware

components and software programs that execute on the

hardware platforms

 Hardware-Software Codesign ?

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

4

Microelectronics trends

• Better device technology

• reduced in device sizes

• more on chip devices > higher density

• higher performances

• Higher degree of integration

• increased device reliability

• inclusion of complex designs

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

5

Digital Systems

Judged by its objectives in application domain

• Performance

• Design and Manufacturing cost

• Ease of Programmability

It depends on both the hardware and software components

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

6

Hardware/Software Codesign

A definition:

Meeting System level objectives by exploiting
the synergism of hardware and software

through their concurrent design

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

7

Concurrent design

Traditional design flow

Concurrent (codesign)
flow

HW SW

start

start

 HW SW
Designed by independent
 groups of experts Designed by Same group of

experts with cooperation

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

8

Codesign motivation

Trend toward smaller mask-level geometries leads to:

• Higher integration and cost of fabrication.

• Amortize hardware design over large volume productions

 Suggestion:

 Use software as a means of differentiating products based
on the same hardware platform.

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

9

Story of IP cores

What are these IP Cores?

 Predesigned, preverified silcon circuit block, usually
containing 5000 gates, that can be used in building larger
application on a semiconductor chip.

Complex macrocells implementing instruction set
processors (ISP) are available as cores

• Hardware (core)

• Software (microkernels)

Are viewed as intelectual property

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

10

IP core reuse

• Cores are standardized for reuse as system building blocks

 Rationale: leveraging the existing software layers including OS
and applications in ES

Results:

1. Customized VLSI chip with better area/ performance/
power trade-offs

2. Systems on Silicon

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

11

Hardware Programmability

Traditionally

• Hardware used to be configured at the time of
manufacturing

• Software is variant at run time

The Field Programmable Gate Arrays (FPGA)
has blurred this distinction.

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

12

FPGAs

• FPGA circuits can be configured on-the-fly to implement
a specific software function with better performance
than on microprocessor.

• FPGA can be reprogrammed to perform another specific
function without changing the underlying hardware.

This flexibility opens new applications of digital circuits.

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

13

Why codesign?

• Reduce time to market

• Achieve better design
• Explore alternative designs

• Good design can be found by balancing the HW/SW

• To meet strict design constraint
• power, size, timing, and performance trade-offs

• safety and reliability

• system on chip

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

14

Distinguishing features of
digital system

• Interrelated criteria for a system design

Hardware
Technology

Level of
Integration

Degree of
Programmability

Application
Domain

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

15

Application Domains

• General purpose computing system
• usually self contained and with peripherals

• Information processing systems

• Dedicated control system
• part of the whole system, Ex: digital controller in a manufacturing

plant

• also, known as embedded systems

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

16

Embedded Systems

• Uses a computer to perform certain functions

• Conceived with specific application in mind
• examples: controllers in autombiles, remote controller for robots, answering

machines, etc.

• User has limited access to system programming
• system is provided with system software during manufacturing

• not used as a computer

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

17

Degree of Programmability

 Most digital systems are programmed by some software
programs for functionality.

Two important issues related to programming:

• who has the access to programming?

• Level at which programming is performed.

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

18

Degree of Programmability:
Accessibility
Understand the role of:

 End users, application developers, system

integrator and component manufacturers.

Application Developer: System to be retargetable.

System Integrator: Ensure compatibility of system components

Component Manufactures: Concerned with maximizing product
reuse

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

19

Degree of Programmability

Example 1: Personal computer

End User: Limited to application level

Application Dev.: Language tools, Operating System, high-
level programming environment (off the self
components)

Component Manf.: Drive by bus standards, protocols etc.

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

20

Example 2.

Embedded Systems

• End user: Limited access to programming

• Most software is already provided by system integrator who
could be application developer too!

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

21

Level of Programmability

• Systems can be programmed at application, instruction and
hardware levels

• ApplicationLevel:Allowsuserstospecify“optionof

functionality”usingspeciallanguage.

• Example: Programming VCR or automated steering
control of a ship

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

22

Level of Programmability

• Instruction-level programmability

• Most common ways with ISA processors or DSP

• compilers are used in case of computers

• In case of embedded systems, ISA is NOT visible

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

23

Level of programmability

• Hardware level programmability

Example: Microprogramming (determine the behavior of control unit
by microprogram)

• Emulating another architecture by alternation of p

• Some DSP implementations too

• Never in RISC or ISA processors

configuring the hardware (after manufacturing) in the desired way.

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

24

Programmability

Microprogramming Vrs. Reconfigurability

Microprogram allows reconfigure the control unit
versus Reconfigurable system can modify both

datapath and controller.

Reconfigurability increases usability
but not the performance of a system.

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

25

Performance and Programmability

• General computing applications: use of superscalar RISC
architecture to improve the performance (instruction
level programming)

• Dedicated Applications: Use of application specific
designs (ASICs) for power and performance

• Neither reusable nor cheap!

What if ASICs with embedded cores?

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

26

Performance and Programmability

• Any other solutions?

 How about replacing the standard processors by
application specific processors that can be programmed
at instruction level (ASIPs).

• Better power-performance than standard processor ?

• Worse than ASICs

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

27

Programmability and Cost:
ASIPs
• Cost can typically be reduced over larger volume than on

ASICs (with multiple applications using ASIPs).

• Ease to update the products and engineering changes through
programming the HW,

• However, includes compiler as additional cost

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

28

Hardware Technology

• Choice of hardware to implement the design affects the
performance and cost

• VLSI technology (CMOS or bipolar, scale of integration and
feature size etc.) can affect the performance and cost.

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

29

Hardware Technology: FPGAs

• Performance is an order of magnitude less than corresponding
non-programmable technology with comparable mask size

• For high volume production, these are more expensive than
ASICs

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

30

Level of Integration

• Integration leads to reducing number of parts, which means,
increased reliability, reduced power and higher performances

• But it increases the chip size (cost) and makes debugging more
challenging.

• Standard components for SoC are cores, memory, sensors and
actuators.

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

31

Embedded System Design
Objective
• Embedded systems:

control systems: reactive, real-time

function & size: micro controller to high throughput data-
processor

• requires leveraging the components and cores of microprocessors

• reliability, availability and safety are vital
• use of formal verification to check the correctness

• may use redundancy

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

32

Challenges with ASIP

• Compatibility requirement is less important

• Goal: support specific instruction mixes

• CAD of compiler is partly solved problem

Price of the flexibility in choosing mixed instruction
 set is to develop the application specific compiler.

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

33

Typical codesign process

System
Description

HW/SW
Partitioning

Software
synthesis

Interface
synthesis

Hardware
synthesis

System
integration

Modeling

Unified representation

Instruction set level
HW/SW evaluation

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

34

Steps in Codesign

HW-SW system involves

• specification

• modeling

• design space exploration and partitioning

• synthesis and optimization

• validation

• implementation

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

35

Steps in codesign

Specification
• List the functions of a system that describe the behavior of an

abstraction clearly with out ambiguity.

Modeling:
• Process of conceptualizing and refining the specifications, and

producing a hardware and software model.

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

36

Modeling style

• Homogeneous: a modeling language or a graphical formalism
for presentation

• partitioning problem used by the designer

• Heterogeneous: multiple presentations
• partitioning is specified by the models

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

37

Steps in codesign

Validation:

 Process of achieving a reasonable level of confidence that the
system will work as designed.

• Takes different flavors per application domain:
cosimulation for performance and correctness

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

38

Steps in codesign

Implementation:

 Physical realization of the hardware (through synthesis) and of
executable software (through compilation).

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

39

Partitioning and Scheduling
(where and when)

• A hardware/software partitioning represents a physical
partition of system functionality into application-specific
hardware and software.

• Scheduling is to assign an execution start time to each task in a
set, where tasks are linked by some relations.

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

• For more details, refer to:

• Hardware Software Codesign of Embedded System, CPSC489-
501 by Rabi Mahapatra.

• Staunstrup and Wolf Ed. “Hardware Software codesign:
principles and practice”, Kluwer Publication, 1997

• The lecture is available online at:

• http://bu.edu.eg/staff/ahmad.elbanna-courses/12134

• For inquires, send to:

• ahmad.elbanna@feng.bu.edu.eg

40

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#9

 , S
pr

in
g 2

01
5

http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
mailto:ahmad.elbanna@feng.bu.edu.eg

